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Abstract 

 
This study examines how to determine the steady-state solution (condition of a system that does not change over 

time) of a linear differential equation. It further explains the methods of solving a linear differential equation using 

integrating factor which produce the same general solution as Separation of Variable with the applications in the 

field of science and engineering. The numerical Simulations for table 1-3 were obtained analytically to predict the 

population size over a long period of time through the theory which states that over a long period of time, as the 

independent variable   t→ ∞, the population size will saturate and approach the steady–state value. The results 

obtained in these are fully presented and discussed. 
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Introduction  

The differential equation has many interesting applications in the field of science and engineering. Despite the wild 

applications of a differential equation, it is not common to find research papers which capture the full concepts of 

steady-state solution of a differential equation by using the method of integrating factor. It is possible to study the 

convergent of the general solution as the independent variable t approaches infinity. The key question is over a very 

long period of time, will the general solution approach the steady-state solution? This idea is the key background 

that must be satisfied before the population size can be estimated. 

According to Ekaka-a (2009) investigated the computational and mathematical modeling of plant species in harsh 

climate. Nwagrabe etal [2] investigated the biodiversity effects and random disturbance on the ecosystem between 

two interacting yeast species using MATLAB ODE45 numerical scheme without the formulation of differential 

equation. Ekaka-a etal [3] studied the parametric sensitivity analysis of a dynamical system of continuous non-linear 

first order differential equations using the 1-norm 2-norm and infinity norm estimation. George etal [4] investigated 

the behaviour of a dynamical system using MATLAB ODE45 as an alternative method of verifying qualitatively the 

concept of stability of a unique positive steady-state solution and  how the changes in initial data affects the stability 

of the steady state solution. Akpodee and Ekaka-a [5] studied the deterministic stability analysis of non linear first 

order differential equation using a numerical approach. Thieme [6] investigated the uniform persistence and 

permanence for non-autonomous semi-flows in population biology. Yan etal [7] worked on the stabilization and 

prediction of population system using a mathematical model. Luo [8] studied the population modeling by 

differential equations and predicting the extinction of antelopes in china using exponential and logistic model. This 

work extend the work of [6, 8] in the study of population biology using numerical approach. The purpose of this 

study is to analyze the steady state solution of a linear differential equation and predicting the population size over a 

long period of time (years) as it converges to a unique value which corresponds with the Steady-state value.  

Formulation of Problem   

Let 𝑝 be the population of a place. Since 𝑃 is a function of time, 𝑃(𝑡) is the given population with respect to time. 

We take 𝑟 to represents the growth rate and 𝑄 the carrying capacity.  
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Hence, we obtain this differential equation model. 
𝑑𝑃

𝑑𝑡
= 𝑟(𝑄 − 𝑃),  𝑟 < 0                                                                                        (1) 

With the following initial conditions p(0)=15, p(0)=18 and p(0)=30. 

where 𝑃 =Population 

           𝑟 = Growth rate 

           𝑄 = Carrying capacity 

            𝑡 = Time 

With the initial conditions p(0)=15, p(0)=18 and p(0)=30, 𝑟 = 0.05 and 𝑄 = 1800 

Expanding the right hand side of equation (1), we obtain a linear differential equation model. 
𝑑𝑃

𝑑𝑡
+ 𝑟𝑃 = 𝑟𝑄                           (2) 

Let 𝐾 = 𝑟𝑄                                                                                                       (3) 

Substituting equation (3) into (2). 
𝑑

𝑑𝑡
+ 𝑟𝑃 = 𝐾               (4) 

 

Steady- State Solution 

To determine the steady state solution, the change in dependent and independent variable is equal to zero using 

equation (4) 

   
𝑑𝑃

𝑑𝑡
= 0 

                                                                            𝑟𝑃 = 𝐾    

Let 𝑃 = 𝑃𝑒 so that 𝑃𝑒 will be different from the dependent variable. 

                                                                𝑟𝑃𝑒  = 𝐾    

                                                                 𝑃𝑒 =
𝐾

𝑟
  

but 𝐾 = 𝑟𝑄 from equation (3). Then substituting 𝐾 into the expression  

                                                                 𝑃𝑒 =
𝑟𝑄

𝑟
 

                                                                 𝑃𝑒 = 𝑄 

                                                           i.e.  𝑃𝑒 = 1800         (5) 

Having known the steady state solution of this model, we conclude that the steady-state solution exist and then solve 

the linear differential equation model from equation (4) using the method integrating factor. 

𝐼. 𝐹 = 𝑒𝑎 ∫ 𝑑𝑡              (6) 

Here the integrating factor is the coefficient of 𝑃 

𝐼. 𝐹 = 𝑒𝑟 ∫ 𝑑𝑡 

𝐼. 𝐹 = 𝑒𝑟𝑡 

                        Substituting  𝑒𝑟𝑡 into equation (4) 

𝑒𝑟𝑡
𝑑𝑃

𝑑𝑡
+ 𝑟𝑃𝑒𝑟𝑡 = 𝐾𝑒𝑟𝑡 

𝑑

𝑑𝑡
(𝑃𝑒𝑟𝑡) = 𝐾𝑒𝑟𝑡 

   Integrating both side  

𝑒𝑟𝑡𝑃 = 𝐾 ∫ 𝑒𝑟𝑡 𝑑𝑡 

𝑒𝑟𝑡𝑃 =
𝐾

𝑟
𝑒𝑟𝑡 + 𝐶 

                                                               𝑃(𝑡) =
𝐾

𝑟
+ 𝐶𝑒−𝑟𝑡          (7) 

                           since 𝐾 = 𝑟𝑄, equation (7) becomes 

𝑃(𝑡) =
𝑟𝑄

𝑟
+ 𝐶𝑒−𝑟𝑡 

                                                               𝑃(𝑡) = 𝑄 + 𝐶𝑒−𝑟𝑡  

Where 𝑄 = 1800, 𝑟 = 0.05 

                                                             𝑃(𝑡) = 1800 + 𝐶𝑒−0.05𝑡      (8) 

 

Equation (7) is the general solution for this linear differential equation model.  

Now, from the general solution obtained above, we take the limit as t →∞ such that  
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𝐿𝑖𝑚𝑖𝑡

𝑡→∞
 𝑃(𝑡) =  

𝐿𝑖𝑚𝑖𝑡

𝑡→∞
 1800 + 

𝐿𝑖𝑚𝑖𝑡

𝑡→∞
 

𝐶

𝑒0.05(∞) = 1800  

 

Which corresponds with the steady-state solution in equation 6 and it is also called a limiting value.  
 

Applying the initial condition for  𝑃(0) = 15, 𝑃(0) = 18 and  𝑃(0) = 30, 𝑟 = 0.05, 𝑄 = 1800 into the general 

solution we obtain the following particular solutions. 

     𝑃(𝑡) = 1800 − 1785𝑒−0.05𝑡                                (9) 

     𝑃(𝑡) = 1800 − 1782𝑒−0.05𝑡      (10) 

     𝑃(𝑡) = 1800 − 1770𝑒−0.05𝑡      (11) 

Predicting the Population Size 

We shall predict P(t) as the parameter t varies at 50, 150, 250, 300, 350, 400, 450 & 500 for each of the particular 

solution obtained from the given initial conditions for equation 9-11. 

Results and Discussion 

𝑃(𝑡) = 1800 − 1785𝑒−0.05𝑡
  

Varying t and keeping k constant, we tabulate below:    

Example t(years) Constant 
K

)(05.0 te

 

K = 1770 

P(t) 

1 50 1800 146.5217225 1,653.478277 

2 100 1800 12.02723539 1,787.972765 

3 150 1800 0.9872556 1799.012744 

4 200 1800 0.081038874 1799.918961 

5 250 1800 0.006652075912 1799.993348 

6 300 1800 0.0005460356421 1799.999454 

7 350 1800 0.00004482133493 1799.999955 

8 400 1800 0.000003679159216 1799.999996 

9 450 1800 0.0000003020037792 1800.000000 

10 500 1800 0.00000024789978 1800.000000 

 

Table 1: showing the convergent of population size to the steady-state value over a long period at t=50, 100, 

150, 200, 250, 300, 350, 400, 450 and 500 years. 

 Table 1: Determines the stability of the given population and predicts the exponential growth of the population 

which converges to the steady–state after 200 years and fully saturate after 450 years as P(t)→ ∞. Hence, the steady 

state solution of this population exists. 

Using the initial condition for p(0) = 18, the particular solution gives     

𝑃(𝑡) = 1800 − 1782𝑒−0.05𝑡  

Varying t and keeping k constant, we tabulate below:    

 

Example t(years) Constant 
K

)(05.0 te

 

K = 1,782 

P(t) 

1 50 1800 146.2754675 1,653.724532 

2 100 1800 12.00702155 1,787.992978 

3 150 1800 0.985596347 1,799.014404 

4 200 1800 0.080902674 1,799.919097 

5 250 1800 0.006640895953 1,799.993359 

6 300 1800 0.0005451179351 1,799.999455 

7 350 1800 0.000003672975755 1,799.999955 

8 400 1800 0.000003672975755 1,799.999996 
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9 450 1800 0.0000003014962098 1800.000000 

10 500 1800 0.00000002474831597 1800.000000 

 

Table 2: showing the convergent of population size to the steady-state value over a long period at t=50, 100, 

150, 200, 250, 300, 350, 400, 450 and 500 years. 

The analysis of Table 2: Show the stability of the given population and predicts the exponential growth of the 

population which converges to the steady–state after 100 years and fully saturate after 450 years as P(t)→ ∞.    

Using the initial condition for P(0)=30 which gives the particular solution 

𝑃(𝑡) = 1800 − 1770𝑒−0.05𝑡     

Varying t and keeping k constant, we tabulate below:  

 

Example  t(years) Constant  
K

)(05.0 te

 

K = 1,7 70 

P(t) 

1 50 1800 145.2904476 1.654.709552 

2 100 1800 11.92616619 1,788.073834 

3 150 1800 0.978959335 1,799.021041 

4 200 1800 0.080357875 1,799.919642 

5 250 1800 0.006596176115 1,799.993404 

6 300 1800 0.0005414471075 1,799.999459 

7 350 1800 0.000004444468506 1,799.999956 

8 400 1800 0.000003648241912 1,799.999956 

9 450 1800 0.0000002994659323 1800.000000 

10 500 1800 0.00000002458166064 1800.000000 

 

Table 3: showing the convergent of population size to the steady-state value over a long period at t=50, 100, 

150, 200, 250, 300, 350, 400, 450 and 500 years. 

The analysis of Table 3: Show the stability of the given population and predicts the exponential growth of the 

population which converges to the steady–state after 100 years and fully saturate after 450 years as P(t) → ∞. This 

further explains that the population of this system does not change over time. 

Conclusion 

The significant findings of Numerical simulation of steady-state analysis and predicting the population size over 

time are as follows: 

1. The stead- state value is the same as the carrying capacity of a given population which is the maximum 

growth of the population. 

2. The existence of the steady-state solution determines the stability of population, otherwise it’s either 

unstable or grow into extinction. 

3. The population growth converges faster as the initial conditions increases. 

4. If we take the limit as the independent variable t→∞, we will have a unique convergent that corresponds 

with steady-state value. 

5. We must apply the initial condition in order to obtain the particular solution from the general solution in 

order to predict the population size. 
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